Evaluating Stitching Capabilities of RvS Transformer Algorithms

David Chen' Arthi Suresh' Prateek Varshney '

Abstract

Recent advancements in reinforcement learning
(RL) have demonstrated that offline reinforce-
ment learning can be cast as a sequence model-
ing problem, achieving competitive performance
on several RL benchmarks. However, since
Transformer-based Reinforcement Learning via
Supervised Learning (RvS) algorithms do not ex-
plicitly maximize rewards, they typically strug-
gle to stitch together suboptimal trajectories to
generate optimal policies. While several improve-
ments to the original Decision Transformer have
been proposed, there is no comprehensive evalua-
tion of these algorithms across difficult stitching
environments. In this paper, we benchmark the
stitching capabilities of various RvS methods on
several AntMaze settings, including more chal-
lenging mazes omitted by most papers. We ex-
plore an improved waypoint selection mechanism
for the Waypoint Transformer, and demonstrate
performance improvements in difficult AntMaze
settings. Additionally, we show that waypoints
learned on one maze can be utilized to achieve bet-
ter or comparable performance on another maze,
highlighting the potential for transfer learning in
goal-conditioned behavior cloning. Our contribu-
tions are two-fold: (1) We provide a more com-
prehensive comparison of the effective trajectory
stitching capabilities of the different Transformer-
based RvS methods, and (2) provide empirical re-
sults for our enhancements to current algorithms
that suggest avenues for future research.

1. Introduction

In the classical reinforcement learning (RL) setting, an agent
interacts with the environment to collect data and learn
policies that maximize rewards. In settings where online
interaction can be expensive or risky, offline RL, which
learns policies from pre-collected data without online inter-
action, may be preferable. Recent work demonstrates that
Transformer-based architectures enable recasting offline RL
as a sequence modeling problem, yielding performance on
tasks such as Atari, OpenAl Gym, and Key-to-Door that is

on par with or exceeds other popular offline RL baselines
such as conservative Q-learning and behavior cloning (Chen
et al., 2021; Janner et al., 2021a; Bhargava et al., 2024).
This reinforcement-learning-via-supervised-learning (RvS)
paradigm presents the exciting opportunity to leverage the
vast progress in the supervised learning and sequence learn-
ing domains for reinforcement learning problems.

The recent Transformer-based RvS algorithms draw from
traditional behavior cloning methods but additionally con-
dition on a desired outcome. Although promising, these
outcome-conditioned behavior cloning methods do not ex-
plicitly maximize returns and suffer from an inability to
stitch together segments of suboptimal trajectories, com-
pared to dynamic programming methods. This limitation
is amplified when training trajectories covering only por-
tions of the path to the goal never fully reach the goal,
which makes conditioning on the goal during these portions
undefined. Figure 1. illustrates the stitching problem on
antmaze—-large—-play from D4RL.

stitching

Figure 1. Borrowed from the Waypoint paper (Badrinath
et al., 2023), the graphic represents training trajectories for
antmaze-large-play navigating from the start location (cir-
cle) to the target location (star). Blue lines represent trajectories
that pass through the starting region, while red lines represent
trajectories that pass through the target region. Less than 5% of all
trajectories pass through all regions.

In this paper, we address these challenges by first com-
prehensively benchmarking several improvements to the

Evaluating Stitching Capabilities of RvS Algorithms

original Decision Transformer, including the Decision Con-
vFormer, Elastic Decision Transformer (EDT), the Way-
point Transformer, and Reinformer. Our focus is on eval-
uating these methods in more challenging environments,
such as antmaze-medium and antmaze—-large, to
provide a thorough assessment of their stitching capabilities.
Additionally, we propose enhancements to the Waypoint
Transformer (the current best performing method) by more
effectively sampling waypoints, by weighting the MSE loss
in the goal network by the returns-to-go, biasing the learned
waypoints towards more “effective” waypoints rather than
the average state K steps ahead, and dynamically choosing
K. Lastly, we note that the choice of goal-conditioning as
opposed to reward-conditioning seems to be consequential
for the AntMaze settings. We attempt to further under-
stand if learning waypoints using goal conditioning in one
maze can achieve comparable performance when applied
to another maze, demonstrating that the waypoint network
imparts setting-agnostic navigation capabilities to the agent.

Summary of Contributions

1. We provide a comprehensive benchmarking of
Transformer-based RvS algorithms on challenging
antmaze environments.

2. We propose improved waypoint selection mechanisms
for the Waypoint Transformer and provide empirical
evidence that some of these directions may result in
better performance.

3. We demonstrate the setting-agnostic navigation capabil-
ities of the waypoint network and provide insights into
the performance differences between goal-conditioning
and reward-conditioning in the AntMaze settings.

2. Background

Recent advancements in offline RL have highlighted the
potential of Transformer-based architectures to reframe RL
as a sequence modeling problem. Notable works include
the Decision Transformer, which leverages this paradigm
to achieve competitive performance on a variety of tasks
(Kim et al., 2023; Janner et al., 2021a; Bhargava et al.,
2024). These methods may be preferred over traditional RL
methods because they do not require explicitly learning any
value function. However, these methods often struggle with
stitching, the ability to combine segments of suboptimal
trajectories to form a successful path to the goal.

2.1. Outcome-Conditioned RvS

The Decision Transformer and other related algorithms are
part of a more general class of reinforcement learning al-
gorithms that reduce the policy learning to a supervised

learning problem. The distinguishing factor from traditional
behavior cloning is the presence of a conditioning variable.

The two major types of conditioning in the reinforce-
ment learning context are reward-conditioning and goal-
conditioning. With reward-conditioning, we attempt to learn
actions for trajectories that will give us a desired return. For
goal-conditioning, we assume prior knowledge of a specific
goal. We then learn actions for trajectories that lead us to
the given goal.

As presented, these methods do not explicitly perform re-
ward maximization.

2.2. Trajectory Stitching

Trajectory stitching in the context of offline reinforcement
learning is necessary when training datasets contain several
“suboptimal” trajectories, but some sequence of portions of
the trajectories presents a valid and often optimal policy.
This is analogous to having knowledge about how to get
from a state A to state B, knowledge about how to get from
state B to state C, but no direct experience or knowledge
about how to get from state A to C.

This issue is easily overcome with traditional TD learning
methods, since the Bellman backup present in these methods
directly allows for seamlessly connecting similar states and
their learned values across different trajectories. However, it
is not trivial to address this issue with outcome-conditioned
RvS methods. If the only trajectories available during one
portion of the task are not conditioned on the final outcome,
but are part of the actual required path in order to reach the
final outcome, it is not obvious how the method would learn
to associate the trajectories to the different desired outcome.

2.3. Current State of Stitching in RvS

Several improvements to the original Decision Transformer
have been proposed which claim to improve upon stitch-
ing including the Decision ConvFormer, Elastic Decision
Transformer (EDT), the Waypoint Transformer, and the
Reinformer (Kim et al., 2023; Wu et al., 2023; Badrinath
et al., 2023; Zhuang et al., 2024). EDT modifies the re-
wards used for conditioning by choosing a maximum over a
number of context windows, recognizing that shorter win-
dows ones may be better when the trajectory is suboptimal.
The Waypoint Transformer generates intermediate targets
or “waypoints” to help guide the model through stitching
regions, and the Reinformer uses expectile regression to
condition on estimated max returns achievable from a point,
improving stitching by addressing the out-of-distribution
issue with return conditioning.

Despite claiming to improve stitching, several of these pa-
pers only present results for antmaze-umaze, on which
the original Decision Transformer already achieves compet-

Evaluating Stitching Capabilities of RvS Algorithms

itive performance. We propose that evaluating additionally
on antmaze-medium and antmaze-large can pro-
vide a more thorough evaluation of an algorithm’s stitching
capabilities. Since these settings generally have a lower
proportion of input trajectories that achieve the final goal (a
metric we quantify in Figure 2) and a lower proportion of
trajectories that cover all regions (see Figure 1), they allow
us to assess the methods’ robustness to learn good policies
and stitch effectively under varying levels of suboptimality
and overlap in the trajectories dataset. Our work extends

Figure 2. Suboptimality in input dataset

umaze

umaze-diverse
medium-diverse
medium-play
large-play

large—-diverse

0 20 40 60 80
% expert trajectories that are successful

100

this evaluation to more complex environments, providing a
clearer picture of the robustness and effectiveness of these
algorithms in handling difficult stitching scenarios.

Other improvements that we chose not to evaluate include
the use of a learned value function as a guide either during
training or during inference (Wang et al., 2023; Janner et al.,
2021b). There are also other methods that focus on solving
the trajectory stitching issue by augmenting the data with
learned transitions between trajectories (Li et al., 2024).

3. Approach
3.1. Evaluation of RvS Algorithms

We replicated the Decision Transformer (DT), Decision
ConvFormer (DC), Elastic Decision Transformer (EDT),
Waypoint Transformer (WT), and Reinformer based on the
GitHub repositories associated with their respective papers.
We reproduced and, where needed, extended evaluations
to the AntMaze results, using hyperparameters provided in
each of the individual papers.

Decision Transformer models trajectories autoregressively
with returns-to-go model R, = sz=t ry as part of the input
trajectory: 7 = (Ry,s1,a1,Ro, s9,0a9,..., Ry, sr,ar).
At test time, we can specify the desired performance (e.g.
1 for success or O for failure), as well as the environment
starting state, as the conditioning information to initiate
generation. An embedding for each timestep is learned and
added to each off the 3K tokens ((s¢, at, Rt) at K times-
tamps) which are then processed by a GPT model, to predict
future actions using autoregressive modeling (See Figure 3).

While the original paper did not run experiments on the
AntMaze problem, we use the same evaluation methodol-
ogy as for other models. Since Decision ConvFormer only
modifies the attention mechanism in DT, it uses the same
evaluation/inference method as the Decision Transformer.

-%-%

causal transformer .

1@@

Figure 3. Decision Transformer applied to a sequence of states,
actions, and returns-to-go, outputting actions.

The Elastic Decision Transformer (EDT) first estimates the
maximum achievable return R; for each history length ¢ and
the maximal value provides the optimal history length w.
Using w, it estimates the expert value R, at the correspond-
ing truncated time step ¢ using Bayes’ Rules. Subsequently,
the action to take is predicted using the causal transformer
decoder by using the truncated traversed trajectory w.

The Reinformer takes a similar approach, but instead of
modifying the context length, it aims to predict the maxi-
mum achievable return seen in the training trajectories at
a given state. It then directly uses the predicted R; for
conditioning.

All of the aforementioned algorithms tackle AntMaze as a
reward-conditioned task. Waypoint Transformer presents
a different approach using goal-conditioning. We describe
more details on Waypoint Transformer and our improve-
ments in the next section.

While the original papers for all of the mentioned methods
are inconsistent in their evaluation, it likely does not change
the conclusions regarding the gap between the Waypoint
Transformer and other algorithms on the difficult mazes.
For our evaluation, each algorithm, with the exception of
Elastic Decision Transformer due to larger computational
complexity and runtime, is evaluated on three different seeds.
We report the mean and standard deviation of the D4RL
score across these seeds. For AntMaze, the D4RL score can
be interpreted as the fraction of rollouts that reach the goal.

3.2. Waypoint Transformer

The Waypoint Transformer leverages the proposed waypoint
network Wy and a GPT-2 architecture based on multi-head
attention (See Figure 4). The WT policy 7y is conditioned
on past states s;_j.. ; and waypoints (either generated goals

Evaluating Stitching Capabilities of RvS Algorithms

1 i 1

waypoint transformer

i 1 i | 1

W, w, ",
e — -

HE HE

Figure 4. Waypoint Transformer architecture. ®; = Wy (s¢,w)
represents the output of the goal/reward waypoint network.

or rewards), denoted as @,y = Wy (s¢i—k..t,w).

To make the K-step predictions of future observations con-
ditioned on the current state, s;, and the target goal, w, WT
is trained to minimize the objective:

arg min Z Ly(We(st,w), St4k),
TeD

on the offline dataset D, where L is the mean-squared error
(MSE) loss for continuous state spaces. Further, unlike DT,
the WT is not conditioned on past actions a;_.. ¢; @ 18
concatenated with s; to produce one token per timestep ¢,
instead of multiple tokens used in DT.

3.3. Choosing Better Waypoints

The Waypoint Transformer trains the waypoint network by
selecting random start and end indices in input trajectories,
and predicting the location K steps ahead, where K = 30
was chosen after experimenting with various values. While
this imparts the waypoint network with the general ability
to generate intermediate targets given arbitrary start and end
locations, there is nothing that meaningfully connects these
targets to achieving the global goal during training.

To improve upon this, we explored a few hypotheses. First,
we posit that waypoints associated with trajectories that
achieve the global goal may be more useful to learn. While
we feed in the global goal to the waypoint network during
inference, we might benefit from the waypoint network
attending more to the trajectories that are more relevant to
achieving the global goal during training. We formulate
the revised waypoint network task as the following, where
f (Rt) is a monotonic function of the returns-to-go at time
step t.

argmin Y Lo(Wo(sr.w).siar) - F(R) (1)
T7€D

We experiment with a linear form for f(R;) = b+ ¢ R,
where b = 0.5, ¢ = 10.0.

In addition, we hypothesize that while K = 30 might have
yielded the best empirical performance in experiments de-
tailed in the Waypoint Transformer paper, different distances
may be more optimal in different parts of the maze. For
example, in areas with large divergence in trajectories, it
might be useful to use waypoints that are closer to the cur-
rent state as a way to “tread cautiously.” Also, the original
Waypoint paper noted that most of the trajectories that fail
get stuck before the last turn, and we hypothesized that per-
haps the state K = 30 steps ahead used for conditioning
may overshoot the goal. Dynamically changing the distance
closer to the goal may help in this case.

arg m(gn Z Lo(We(st,w), [St4is St42is - Strx]) (2)
T€D

argmin > —logmo(arlsi—k.o Pik.t) (3)
T€D

First, we predict multiple waypoints ¢, 2, ..., K steps ahead,
i.e. atotal of [K/i] waypoints, instead of just one way-
point K steps ahead. We choose 7 = 5 and K = 30 in
our experiments. Then, we generate a weight for each way-
point, where this weighting module takes in the goal and the
current observation. These weights are normalized using a
softmax layer with high temperature and used to compute
the weighted sum of the multiple waypoints via a dot prod-
uct, to yield a single (x, y) which is a composition of the
multiple waypoints. Because we use a temperature of 2,
we are effectively choosing a single waypoint for condition-
ing. These weights are trained jointly with the transformer
network.

fo

Figure 5. The waypoint network denoted by W outputs n way-
points, and is trained independently. The transformer fy and the
weights wg are learned together. The weights pass through a soft-
max and are dotted with the waypoints to produce a single (z, y)
value to use for conditioning.

For these various “reweighting” schemes we focus our train-
ing and evaluation on antmaze-large-diverse and
antmaze—-large-play as these are representative set-
tings for harder mazes on which the Waypoint Transformer

Evaluating Stitching Capabilities of RvS Algorithms

outperforms other methods, and where we might be able to
drive performance even further.

Lastly, while we attempt to fine-tune waypoints to
the goals of interest, we also explore how transfer-
able the more general, global-goal-agnostic capabilities
of the waypoint network are by training the waypoint
goal network on antmaze-large—-diverse and us-
ing this to train the transformer for a different setting,
antmaze-medium-diverse.

4. Experiments and Results
4.1. Baseline Evaluation

Table 1 shows the performance of the aforementioned algo-
rithms on these different settings. As expected, Decision
Transformer, Elastic Decision Transformer, and the Deci-
sion ConvFormer perform very poorly on the more difficult
AntMaze settings, while the Waypoint Transformer shows
a success rate of above 60% for all of them. However,
some of the other algorithms like Decision ConvFormer
and Elastic Decision Transformer outperform Waypoint
on antmaze—umaze. This validates our hypothesis that
antmaze—umaze alone is not a good indicator of how the
algorithms will fare in difficult stitching scenarios.

When we plot the trajectories taken by Elastic Decision
Transformer and Waypoint Transformer to understand this
performance gap, we see that the Elastic Decision Trans-
former can hardly make it past the first major turn in
large-play (See Figure 6).

We are unable to reproduce results for Reinformer that show
any meaningful improvement in the medium environments,
and the performance in the large environments is also quite
poor (see Table 2).

The performance of these algorithms on the umaze set-
tings are expected based on the results in the original papers.
Notably, Waypoint Transformer does not perform the best
on umaze, and no algorithm demonstrates superior perfor-
mance on all settings. This indicates an opportunity to do a
more thorough analysis of where and why these algorithms
fall short.

4.2. Impact of Goal-Conditioning

An understated but likely important difference between the
Waypoint Transformer and all other methods is the choice of
goal-conditioning as opposed to reward-conditioning. We
attempted to explore this further by augmenting Reinformer
by simply adding in information about achieved goals during
training and desired goals during evaluation. This method-
ology is consistent with Waypoint Transformer as well as
the “RvS-G” approach. We present additional results for a
subset of the harder AntMaze environments, where “RvS-G”

results can be considered as a simple non-waypoint but goal-
conditioned RvS method. These results are pulled from the
Waypoint Transformer paper.

According to the RvS-G results, the presence of an
added goal should provide substantial improvement in
antmaze-large, compared to not being able to solve
the task at all. However, we were unable to produce any
such improvement by simply augmenting Reinformer with
goal-conditioning in addition to reward conditioning. The
choice of hyperparameters and context length may have a
huge impact in this case, as the original Reinformer paper
required an extensive grid-search to select very specific hy-
perparameters for the presented results, including setting
the context length to a mere 3 steps for AntMaze.

Table 2. Impact of goal-conditioning

Env. RvS-G Rein Rein-G
large—-diverse 369+105 067+12 00=£0.0
large-play 324 4+ 10.5 234+£20 067+1.2
4.3. Choosing Better Waypoints
Table 3. Revisiting waypoint selection
Env. WT Lin. Mult. WP
large-diverse 68.748.3 76.2+24 76.8+6.0
large-play 73.242.0 70.7+4.0 68.84+6.3
While providing stronger performance on

large-diverse, the reweighted loss schemes did
not provide substantially and consistently better perfor-
mance compared to the Waypoint Transformer. This may
be because only 8% training instances have non-zero
returns-to-go for the large-diverse setting, which
means the reweighting, due to the sparsity, does not have
much effect. Additionally, the values of b and ¢ for the
linear transformation of returns-to-go were arbitrarily
chosen. Due to computational limitations, we did not
perform a more exhaustive hyperparameter search, which
may have yielded a configuration with better performance.
Lastly, for the large-diverse setting, it is unclear
if weighting examples should increase alignment to the
goal given during rollouts, since the “diverse” dataset is
generated by commanding random goal locations in the
maze and navigating the ant to them.

Predicting multiple waypoints seems to have some marginal
performance wins on large-diverse, but this is not
replicated on large-play. When we tried to plot whether
there was any differentiation at all in the distance of the
waypoints chosen at different parts of the maze, we found

Evaluating Stitching Capabilities of RvS Algorithms

Elastic Decision
Transformer

Waypoint
Transformer

Figure 6. The left image shows 100 rollouts from Elastic Decision Transformer (EDT) on large-play-v2. Note how EDT is unable to stitch
well enough to explore the right half of the maze. The right image shows 100 rollouts from WayPoint Transformer (WT) on large-play-v2.
Note how WT does a great job at stitching and finds the optimal trajectory from the starting position to the goal.

Table 1. Results on AntMaze environments.

Env. DT DC EDT Reinformer WT
umaze 675+£94 81.8+0.38 66 84.4+27 67.1£34
umaze—-diverse 60.6+ 12.0 87.5+2.5 91 65.8 £4.1 65.348.8
med-diverse 1.25+ 2.5 30+ 1.2 2.0 7.3+ 5.1 61 + 84
med-play 5.6+ 5.6 53+ 3.6 0.0 33+£20 64+6.4
large-diverse 0.0+ 0.0 1.3+2.2 0.0 0.67+12 68.7+8.3
large-play 0.63+ 1.2 1.5+ 2.1 0.0 23+£20 732420

that no real patterns are observed; the model consistently
picks the waypoint either 15 or 20 steps ahead, so it is
possible our hypothesis that different waypoints are useful
at different parts of the maze is not true. In Figure 7 we
see that the waypoints generated appear to be smoother and
more “on track” but according to our evaluation results this
doesn’t translate to better overall performance.

4.4. Transfer Learning

We previously stated that since we are not aligning or giving
importance to global goals in the training of the waypoint
network, there might be some opportunity to improve per-
formance by doing so. However, the fact that the waypoint
network provides more general, rather than goal-specific
waypoints is interesting to explore in itself. When we train a
waypoint goal network on antmaze-large-diverse
and use it to train the transformer for a different maze,
antmaze-medium-diverse, we find that it achieves
comparable performance to training both networks on
antmaze-medium—-diverse, when evaluated on 3
seeds.

Table 4. Transfer learning between mazes

Transformer env. Waypoint net env. D4RL Score
medium-diverse medium-diverse 61.64+ 8.4
medium-diverse large—diverse 65.5+ 3.5

If we look at the waypoints generated by the way-
point network trained on large-diverse for the
medium-diverse maze (See Figure 7), we see that they
quite noisy, often predicting parts of the maze that are not
reachable. Yet we observe that it has comparable or better
DA4RL score compared to training the waypoints on the same
maze. This suggests that the accuracy and smoothness of
the waypoints perhaps do not matter much at all, and also
helps explain why our attempted modifications might not
provide consistent improvements.

5. Conclusion

Most of the algorithms perform quite poorly on the more
difficult AntMaze settings. This matches our hypothesis that
despite improving stitching in some scenarios, these algo-
rithms fail in harder environments. Any future algorithmic
exploration that attempts to improve stitching should eval-

Evaluating Stitching Capabilities of RvS Algorithms

Ensemble of Multiple
Waypoints WT

Transfer Learning

Figure 7. The first two images show the waypoints generated along a rollout for the regular Waypoint network and our modified version
where the model selects from an ensemble of waypoints. The last image shows the waypoints generated by a transfer learning approach.
The line that transitions from blue to purple shows the waypoints generated by the network trained on the larger maze setting, applied to

the medium maze, and red-to-yellow line shows the actual trajectory.

uate on these settings to provide a comprehensive view of
performance and motivate understanding of the deficiencies
of existing methods.

Goal conditioning seems to be a crucial choice for higher
performance, allowing algorithms to exploit spatial informa-
tion in the more difficult AntMaze environments. Waypoint
Transformer outperforms other methods on these harder
mazes. Weighting the loss of the waypoint network by
returns-to-go, and sampling from an ensemble of Waypoints
demonstrate better performance on some but not all set-
tings. After analyzing these in conjunction with the erratic
waypoints generated by a transfer learning approach, which
yields comparable-to-better performance, we conclude that
the smoothness and accuracy of the waypoints may not
matter much at all.

The fact that using waypoints generated by a model trained
on one maze to learn a policy for another maze works con-
siderably well presents interesting opportunities to learn a
more general navigation model for goal-conditioned super-
vised learning. In particular, in low-data scenarios, we might
be able to utilize data from similar settings to bootstrap the
learning process and achieve better performance. This direc-
tion relates to “meta-learning” and leveraging pre-training
on more general datasets to enable fine-tuning to a setting
of interest. Future work can expand upon the results here
and assess transferability across more varied settings.

6. Acknowledgements

We thank Anirudhan Badrinath, Garrett Thomas and Profes-
sor Emma Brunskill for providing mentorship and several
code pointers for this project.

7. Code

All code for the attempted modifications can be found
across the following repositories https://github.

com/arthisuresh/waypoint-transformer,
https://github.com/DavidJGChen/
waypoint-transformer (adapted
https://github.com/StanfordAI4HI/
waypoint-transformer. For other algorithms
we reproduced we directly used the authors’ Github code.

from

8. Team Contributions

Due to the nature of the project, we all worked together
on some common aspects as well as the overall concep-
tual understanding of the work. For the baseline evalu-
ations, David produced results for Decision Convformer,
Reinformer, part of Waypoint Transformer, and Reinformer
with additional goal information. Arthi produced results
for Waypoint Transformer, Decision Transformer, and the
attempted modifications to Waypoint (weighting, multiple
waypoints, transfer learning). Prateek replicated results for
Elastic Decision Transformer and developed the coding plot-
ting code which was then modified and used to visualize
trajectories of the different WT variants in collaboration
with David. We analyzed the results together and brain-
stormed on various modifications as well as their intuition.
All team members collaborated on the write-up.

References

Badrinath, A., Nie, A., Flet-Berliac, Y., and Brunskill, E.
Waypoint transformer: Reinforcement learning via super-
vised learning with intermediate targets, 2023.

Bhargava, P., Chitnis, R., Geramifard, A., Sodhani, S., and
Zhang, A. When should we prefer decision transformers
for offline reinforcement learning?, 2024.

Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A.,
Laskin, M., Abbeel, P., Srinivas, A., and Mordatch, I. De-
cision transformer: Reinforcement learning via sequence
modeling, 2021.

https://github.com/arthisuresh/waypoint-transformer
https://github.com/arthisuresh/waypoint-transformer
https://github.com/DavidJGChen/waypoint-transformer
https://github.com/DavidJGChen/waypoint-transformer
https://github.com/StanfordAI4HI/waypoint-transformer
https://github.com/StanfordAI4HI/waypoint-transformer

Evaluating Stitching Capabilities of RvS Algorithms

Janner, M., Li, Q., and Levine, S. Offline reinforcement
learning as one big sequence modeling problem, 2021a.

Janner, M., Li, Q., and Levine, S. Offline reinforcement
learning as one big sequence modeling problem. In Ad-
vances in Neural Information Processing Systems, 2021Db.

Kim, J., Lee, S., Kim, W., and Sung, Y. Decision con-
vformer: Local filtering in metaformer is sufficient for
decision making, 2023.

Li, G., Shan, Y., Zhu, Z., Long, T., and Zhang, W. Diffstitch:
Boosting offline reinforcement learning with diffusion-
based trajectory stitching, 2024.

Wang, Y., Yang, C., Wen, Y., Liu, Y., and Qiao, Y. Critic-
guided decision transformer for offline reinforcement
learning, 2023.

Wu, Y.-H., Wang, X., and Hamaya, M. Elastic decision
transformer, 2023.

Zhuang, Z., Peng, D., Liu, J., Zhang, Z., and Wang, D.
Reinformer: Max-return sequence modeling for offline 11,
2024.

