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Abstract—This report outlines an ongoing project on
exploring bandit algorithms within the classic stochastic
multi-armed bandit framework. The project’s goal is to
provide a comprehensive comparison of algorithms through
reproduction of existing empirical analysis of regret and
runtime, qualitative observations of behavior, and theoret-
ical comparison of proven regret bounds. To date, a simu-
lation framework has been developed and populated with
algorithms such as random, e-greedy, explore-then-commit,
Bayes-UCB, Thompson sampling, and information-directed
sampling, with a set of empirical results conducted in vari-
ous independent and linear bandit settings.

I. INTRODUCTION

In the broad context of online decision-making under uncer-
tainty, the class of problems known as multi-armed bandits
(MABs) has provided a rich environment for insightful
theoretical analysis and applicable algorithms. Multi-armed
bandit problems have been studied in a wide variety of fields,
ranging from computer science and statistics, to operations
research and economics. Although closely related to the
more general setting of reinforcement learning, the study of
MABs typically has a strong focus on the classic dilemma
of exploration-exploitation. Still, fundamental insights from
theoretical developments have been further developed for
more complex reinforcement learning settings, and simple
yet effective bandit algorithms have been deployed for many
practical use-cases in the industry with great success.

A. Project goals and final progress

The primary focus of this course project is to provide a
comprehensive comparison of a collection of algorithms for
the classic stochastic multi-armed bandit setting. Namely,
I do not focus on settings such as those of contextual or
adversarial bandits.

I have implemented a functioning framework for simula-
tion of various bandit algorithms, and reproduced a subset of
the simulation results presented in Russo and Van Roy [1].

Algorithms implemented include e-greedy, explore-then-
commit (ETC), Bayes-UCB, and Thompson sampling (TS),
and variance-based information-directed sampling (V-IDS).
These algorithms are tested in the context of various inde-
pendent settings, such as Bernoulli, Gaussian, and Poisson
bandits, as well as a linear Gaussian setting.

I have also included a short selection of important prereq-
uisite knowledge and key theoretical results related to the
above algorithms.

B. Brief overview of the multi-armed bandit problem.

I examine the stochastic multi-armed bandit problem. At
each time period, an agent is allowed to choose an action
(an arm) to execute, and subsequently observes a random
outcome, often in the form of a scalar reward. Outcomes are
associated with the specific arm, and can either be indepen-
dent or dependent with respect to the other arms. The true
distribution of the outcomes is unknown, and thus explo-
ration of arms is necessary in order to gather knowledge
about rewards. In this project, I restrict analysis to settings
with stationary outcome distributions over time, as well as
restricting the class of eligible actions to be fixed finite sets.

The objective of MAB problems is to maximize the average
cumulative reward over time. Thus, a central issue that
arises is that of exploration-exploitation, where a tradeoff is
necessary in order to discover actions associated with higher
rewards, while still leveraging high reward actions over the
time horizon. In general, the time horizon can be infinite,
but I only analyze and implement problems in a finite-time
setting for this project.

A key difference between MABs and the more general
reinforcement learning framework is the lack of “state”.
In the setting of Markov decision processes, outcomes are
associated with a changing state as well as the selected
action, whereas in the restricted bandit setting, any given
action is assumed to produce ii.d. outcomes when chosen
in different time periods.

Typical theoretical analysis of MABs often involves the
notion of regret, which intuitively is the expected difference
in the sum of rewards between a strategy that chooses the
optimal action at every round, and the actual strategy. There
is also the notion of per-period regret, which is specific to
a single round. Upper and lower bounds on regret are of
interest for various algorithms, and much of the literature is
dedicated to deriving and improving these bounds.

II. RELATED WORKS

The first formulation of the multi-armed bandit problem
is most commonly attributed to a paper from Robbins in
1952 [2]. Since then, numerous techniques and settings have
appeared in the literature. The introduction of “upper confi-
dence bound” strategies as an approach to more efficient
exploration appeared in Lai and Robbins [3].

Many early approaches were more aligned with the fre-
quentist perspective, and extensions of the idea of upper
confidence bounds resulted in algorithms such as UCB1 [4],
which also proved upper bounds on the cumulative regret
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that scaled logarithmically with time. Over time, analysis for
the Bayesian approach also gained popularity, such as the
Bayes-UCB approach introduced by Kaufmann et al. [5].

Around the same time, an approach known as Thompson
sampling started gaining recognition in the context of MABs.
Thompson sampling itself pre-dated the formal bandit defi-
nition, first introduced by Thompson in 1933 [6]. In the
last couple of decades, theoretical and experimental analysis
demonstrated competitive performance in the context of
bandits [7].

Eventually, this culminated in an elegant approach to
deriving upper bounds on regret for Thompson sampling
using concepts from information theory. Russo and Van Roy
introduced the concept of the information ratio, which was
used to prove general bounds that depended on the entropy
of the prior distribution of the optimal action [8].

The information ratio turned out to be quite useful
beyond a one-time analysis of Thompson sampling; Russo
and Van Roy developed a novel algorithm that explicitly
minimized the information ratio during the decision-making
process, and provided theoretical and experimental results
that demonstrated its superiority over Thompson sampling
in various settings [1]. It is this paper that I take inspiration
in terms of reproduction of simulation results.

Finally, there are multiple other resources that have gath-
ered results and techniques across the field of bandits as a
whole, including extensions such as contextual, adversarial,
and many other related settings [9], [10]. Some background
and theoretical results are inspired by the contents of these
comprehensive texts from Slivkins [10], and Lattimore and
Szepesvari [9].

III. METHODOLOGY

A. Problem formulation

We work with a probability space (2, F,P), and all random
variables are defined with respect to this space, including the
random variables that model prior uncertainty as described
commonly in the Bayesian formulation.

The agent chooses actions (A;), . from a finite set A,

and subsequently observes the outcomes (Y; At) , where
’ teN

each Y, , € J. We assume, according to the Bayesian per-
spective, that there is a random element 6 that describes the
true distribution of outcomes, such that conditioned on 6,
the sequence (Y;), = ((Yt, a)aeﬂ)teN is independent and

identically distributed.

Furthermore, the agent observes a reward associated with
the outcome. In many cases, the reward and outcome are
equivalent, but generally, reward can be a known function
R : Y — R For convenience, we can denote R, , := R(Y;’a).

Once we have the notion of reward, we can de-
fine the optimal action(s) to be A* such that A* €
arg max, A]E[Rt’a | 6]. Building on top of this, we can
finally define the T'-period regret of a strategy of choosing
actions 7 to be:

MH

Regret(T,m) = » (R, 4 — Ry 4,),

t=1
where the sequence of actions is understood to be chosen by
m. We can take an expectation on both sides, with respect
to randomness in the choice of actions, outcomes, and over
the prior distribution of 6, which leaves us with the expected
regret.

In general, m=(m), , is understood to be a se-

uence of functions that take in the history 7 =
2A1, Yia At thl,AH)’ and outputs a probability
distribution over the set of actions A.

The history is important for the Bayesian formulation,
where commonly, a posterior distribution is updated as more
data is collected. For example, an estimate of the parameter
0 of an unknown Bernoulli distribution corresponds to a
conjugate prior Beta distribution, which has parameters that
are simple to update given incoming reward observations.

Further concepts which are useful to mention are funda-
mental concepts in information theory.

The Shannon entropy of a discrete random variable is
defined as follows:

1
P(X = 2)log ———.
xezx P(X =x)

The Kullback-Leibler divergence Dy (P | Q) between two
probability measures P and () (given P is absolutely contin-
uous with respect to Q) is:

DwpiQ) :/log(dQ)dP-

The mutual information I(X ;Y) with respect to random
variables X and Y can be expressed as an expectation over
X involving the KL-divergence:

I(X;Y)

_Z]p

zeX

= &) Di (B(Y € | X =) | B(Y € ).

Finally, I describe the information ratio as first introduced in
[8] and utilized in IDS [1]. Let A,(a) denote the expected
regret of an action a at timestep t. Letting A* denote the
optimal action' , we can define A,(a) as the following:

Aya) = E[Rt,A* — R, ‘ ﬂt]'
We can also define the information gain of an action to be:
gi(a) = It(A* ;Y;f,a)'

2
The information ratio for a given action is then Bele)

g¢(a) ~

B. Dataset (bandit simulation)

All relevant “data” is generated online (ad-hoc) during
simulations. Outcomes associated with specific distributions
are generated randomly using existing libraries, such as
numpy.random and scipy.stats.

For example, in a Bernoulli bandit instance, the initial
parameters 6, across K arms are generated independently

Note that the optimal action is unknown, thus we represent it
with a random variable.



from a continuous uniform distribution on [0,1] using
np.random.uniform. The outcomes/rewards are generated ac-
cording to another random function such as np.random.rand.
All subsequent rewards are then generated as needed during
simulation.

C. Baseline (simple algorithms)

The baseline involves implementation of simple non-adap-
tive exploration algorithms for the beta-Bernoulli bandit
setting. The “non-adaptive exploration” terminology is bor-
rowed from Slivkins [10]. These include a random strategy,
various e-greedy strategies, and explore-then-commit.

The random strategy simply chooses an action uniformly
at random from the set of available actions, at each time-step.
This is mainly chosen to demonstrate a worst-case upper
bound on regret for all subsequent algorithms.

The e-greedy algorithms involve choosing a uniformly
random action at each time period with probability €,, and
otherwise choosing the action with the maximum point-
estimate of the mean reward. Notably €, can vary over time,
but overall this class of algorithms is still classified into the
non-adaptive exploration category, given it does not change
its exploration strategy based on the realized history.

Some examples of valid choices of €, are:

« Constant (ex. ¢, = € € [0,1)),

« Decaying (ex. €, = e(t) = t~/3),

+ Explore-then-commit (ex. £, = () = L,.909)-

These approaches are chosen as the baseline of algorithms
that do not incorporate any additional notion of uncertainty
into the exploration strategy, which leads to provably worse
regret-bounds and demonstrably worse realized regret in
simulation.

D. Main approach (advanced algorithms)

More interesting algorithms arise when we attempt to
balance exploration-exploitation through use of optimism,
probability matching, or explicitly minimizing the informa-
tion ratio.

A major family of algorithms in this area are the UCB
algorithms, which range from frequentist algorithms such
as UCB1 to the Bayesian Bayes-UCB.

On the other hand, Thompson sampling selects an
action based off of the statistical possibility that it is optimal
under the posterior distributions.

Finally, I examine information-directed sampling,
where the action is chosen to minimize an information
ratio based on the expected regret and mutual information.
Specifically, I implement a variant of IDS using the variance
Var, (E, [Rt’a | A*]). In other words, this is the variance of
the expected reward of an action over different realizations
of the optimal action. When substituted into the information-
ratio in place of g,(a), the variance-based information ratio
provides an upper bound on the information ratio, and has
been proven to satisfy the same bounds as original IDS.

These algorithms have all been shown to have improved
upper-bounds for regret compared to the baseline algo-
rithms, and have also demonstrated better performance in
simulation.

E. Additional settings

While the beta-Bernoulli bandit setting provides useful in-
sights by itself, extension of analysis to a wider variety of
settings may provide a more complete picture of the capabil-
ities of all the algorithms, as well as distinguish algorithms
that are capable of taking advantage of settings where there
exists a richer information structure.

To that end, I believe it will be worthwhile to implement

the following additional settings:

« Independent Gaussian, where the reward for each arm
follows a Gaussian distribution with a fixed known
variance, and the mean parameters are assumed to be
independent samples from a Gaussian prior.

« Independent Poisson, where the reward for each arm
follows a Poisson distribution, and the rate parameters
are assumed to be independent samples from a Gamma
prior.

« Linear Gaussian, where actions a € R are known
d-dimensional vectors. The rewards correspond to
a'+ €;, where 6 is unknown and drawn from a
multivariate Gaussian prior. Gaussian noise is added in
the form of ¢, with fixed and known variance.

F. Evaluation

For the independent settings, I evaluate all algorithms over
2000 simulations (trials), each running for 7" = 2000. For
each trial, we calculate the cumulutative sum over time, and
that sequence is then averaged over all trials.

For the linear Gaussian setting, I evaluate some algorithms
over T = 250, given the heavy amount of computation
required and some unresolved issues preventing parallel
computation.

I also briefly touch upon the computational runtimes of
the algorithms. Some algorithms, such as e-greedy, only
rely on a few elementary operations each iteration, while
some, like IDS, involve more intensive numerical methods
to approximate integrals, or MCMC based techniques to
directly approximate certain expectations and probabilities.

A final point of comparison can be done theoretically
through best known regret bounds in similar settings.
Derivations will be provided for selected results, and com-
parison between algorithms as well as their empirical results
will be shown.

IV. THEORETICAL COMPARISON

Empirical performance of an algorithm can be complemented
with theoretical results. There are a few important results
one often cares about, but two of the most important are
upper and lower bounds on regret.

These can vary between different settings, and often
settings with more structure and more ways to gather data
can lead to provably better bounds than the more general
case. Indeed, it is possible to show that in settings with
more feedback, such as either full or partial feedback, that an
algorithm such as IDS will accumulate less regret, theoret-
ically, than algorithms that do not take advantage of this
information.



In this section, I compare the upper bounds on regret for
the algorithms I implemented for simulation. For all results, I
assume that rewards are bounded (by 0 and 1 for simplicity).

random and greedy:

These can be considered special suboptimal cases
of e-greedy, and have cumulative regret that scales
linearly with time. See below.
e-greedy:

Depending on the value of ¢, the regret can vary
from linear in time to sublinear. If we choose a constant
0 < € <1, we can see how linear cumulative regret can
arise. If, over a time horizon T, we take a completely
random action for about €T rounds. That itself gives
us an upper bound on regret, and it is clearly linear.

However, for a value of ¢ that decreases over time,
such as € = t~1/3 . (K logt)'/3, we can prove the fol-
lowing sublinear regret bound:

E[Regret(T, 7,.)] < O(T?/* - (K log T)/3).

Proof:
Fix round ¢, and define the clean event for a given
arm as the following:

uu@—uwnswgg%f=nm»

where fi(a) is the current estimate of the mean of
arm a, and p(a) is the true mean. On average, we
end up exploring any given arm around t% times by
round t. Note we cannot apply Hoeffding’s inequality
immediately, given that the number of times we choose
a is not fixed, and may even not be independent from
the samples of a. To fix this, we can just let v,(a) be
the average of the first j times we would have chosen
a, regardless of t or the actual number of times we
choose a.

With this independence fix, now we can apply
Hoeftding’s inequality. We get the following:

Vi, P(|v;(a) —p(a)| <ri(a) >1— t%.

We can then proceed by taking two union bounds, one
over all j, and then one over all actions. Assuming the
current round ¢ is more than the number of arms K,
This results in the following:

P(va, |ji(0) — pla)] < rifa) 21— .
Let’s call this union of clean events for all arms the
clean event, and assume it for the rest of the proof.
Now assume that for round ¢, we do not explore, and
we instead exploit arm a. In the worst case, we do not
choose the optimal arm a*. Then we have the following
bound on the instantaneous regret:

p(a) +ry(a) = fiy(a) > py(a”)
> p(a”) —ry(a”),
which we can rearrange to get:

te,

umﬂ—mw<rww+nww=0( Kb“).

The probability of exploring is €,, and the instanta-
neous regret is upper bounded by 1, so therefore we
have:

Kl
E[Regret(t,7.) |clean] = ¢, + (1 —¢,) - O( ogt)

te,
Klogt
<&+
te,

< O(T?*3 . (KlogT)Y3),

where the last inequality is a result of plugging in the
value for ¢,.

The probability of the “non-clean” event is O(t2),
and the total possible regret in that scenario is ¢. So
we can safely ignore the “non-clean” event. Therefore,
for all ¢, including T, we have our result. B

This proof was re-derived from scratch, and was
originally given as exercise 1.2 from Slivkin’s book [10].

« Bayes UCB:

Kaufmann et al. proved [5] in the beta-Bernoulli case

that regret is upper-bounded such that:

E[Regret(T, mrg)] < 0(@) )

where O indicates that logarithmic factors are ignored.
o Thompson sampling and IDS:
Thompson sampling under bandit feedback was
proven in Russo and Van Roy [8] to have the following
regret bound:

E[Regret(T, mrg)] < \/%KH(A*)T.

Furthermore, in a setting such as the linear bandit
problem, it was shown to have the improved bound:

E[Regret(T, mpg)] < \/%log(K)dT.

Russo and Van Roy showed [1] that information-
directed sampling shares the same regret bounds.
However, as we will soon see, it often outperforms
Thompson sampling in practice.

In addition, replacing the information gain in the
information ratio with the aforementioned variance of
conditional expected rewards results in the same upper
bounds on cumulative regret.

V. REsuLTS AND DISCUSSION

I now present a series of simulation results which serve as
the main result of my exploration for this project. I first
display figures displaying cumulative regret with repsect to
time, and additionally, I display those same results but with
both axes in log scale to further illustrate the relation of the
regret with time.



All simulations are run for 2000 trials, with K = 30, and
2000 timesteps except when otherwise specified.

A. Independent Beta-Bernoulli

For Bernoulli bandits, I first present all algorithms on one
graph, and then focus on only Thompson sampling, Bayes
UCB, and V-IDS for further figures and settings.

beta-Bernoulli Bandit

350 7
—— random

3004 greedy
— e-greedy 0.2

—— e-greedy decay

—— explore-commit 200

—— Bayes UCB
s

—— V-IDS argmin

2504

8]

(=1

[=]
L

cumulative regret
[ =
(=) un
=] =)
L "

50 4

T T T T T
1000 1250 1500 1750 2000

timestep t

T T T
o] 250 500 750

Fig. 1: Full comparison over all algorithms in the independent Bernoulli
setting. For clarity, future figures omit most of the baseline algorithms.
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Fig. 2: Log scale view of Fig. 1. The dotted line has a slope of 1, and
represents a function that scales like square root of time.

In the log-scale figure, it is easy to compare the slopes of the

cumulative regret plots with the given reference function.

The algorithms with linear regret (random, greedy, constant
e-greedy) have slopes of 1. The algorithms with regret that
scales with square root of time (or better) have slops of %
or lower.

For clarity, I present just four algorithms in a separate
figure:
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Fig. 3: Comparison of algorithms in the independent Bernoulli setting.
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Fig. 4: Log scale view of Fig. 3.

B. Independent Gaussian

Gaussian Bandit

q00d e-greedy decay
—— Bayes UCB
— TS5

6001 — v.ps argmin
. 500
5
o
L
o 400
2
=]
]
= 300 4
£
=1
o

2001

100 +

0
T T T T T T T T T
0 250 500 750 1000 1250 1500 1750 2000
timestep t

Fig. 5: Comparison in the independent Gaussian setting.
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Fig. 6: Log scale view of Fig. 5. Note the exaggerated change in slope due
to an initial pass over all unchosen actions.

C. Independent Gamma-Poisson
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Fig. 7: Comparison in the independent Poisson setting. Note that compared
to other settings, the regret observed can be higher even with A = 1.
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Fig. 8: Log scale view of Fig. 7.

D. Linear Gaussian
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Fig. 9: Comparison in the linear bandit setting.

Linear Gaussian Bandit

—— e-greedy decay
Bayes UCB
— TS5

10?1 — \-IDS argmin

cumulative regret (log)

. .
10" 10! 10?
iteration (log)

Fig. 10: Log scale view of Fig. 9.

VI. ERROR ANALYSIS

A. Note on computation time

The linear bandit setting was much more compuationally
demanding, given the introduction of a dimension d, and the
need to invert matrices during the posterior update.

It is especially demanding for V-IDS implemented with
MCMC sampling, since there is a need to generate M
samples from a multivariate gaussian distribution.

For this reason, the time horizon for calculation was
limited to just 250 steps. Even with this limitation, it seems
to be the case that V-IDS is marginally better than Thompson
sampling and Bayes UCB.

Compared to the original paper [1], For the computation-
ally heavy setting with K = 100 and d = 30, I was able to
acheive 0.015 seconds per decision for V-IDS, and around
0.00005 seconds (about 50 ps) per decision for Thompson
sampling.



For the other settings, I was able to run simulations in
parallel on 16 cores (MacBook Pro M4 Max), completing full
sets of simulations in under 10 minutes per run. However,
for linear bandits, I ran into issues with parallelization and
was unable to debug it in time.

B. V-IDS v.s. V-IDS with argmin

In the work introducing IDS [1], it was mentioned that any
algorithm that has “nearly” minimal information ratio still
satisfies strong regret bounds.

During implementation of V-IDS, I noticed that when
optimizing for a policy that produces a probability distrib-
ution between two actions, that it was often the case that
one action was assigned much higher probability. I changed
the action selection mechanism to use a simple argmin over
information ratio, and saw that the behavior between V-IDS
and V-IDS with argmin was nearly the same.
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Fig. 11: V-IDS using typical IDSAction selection compared against V-IDS
using a simple minimization over information ratios for each arm.
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Fig. 12: Log scale of Fig. 11.

This suggests that at least for the beta-Bernoulli setting in
simulation, the performance of the two policies are nearly

identical, while the argmin operation takes a fraction of the
time that the full IDSAction optimization would take.

C. scipy vs. CVXPY

When selecting an optimization library for IDSAction, I
originally intended on using CVXPY. However, given my
inexperience with convex optimization, I kept on running
into issues formulating the problem correctly. I ended up
using scipy.optimize.minimize_scalar instead.

Online discussion suggests that CVXPY may be more
efficient in some cases, and for that reason, I believe that
my implementation of IDSAction was not the most efficient.

In the future, I may attempt to implement my own
optimization algorithm here, given the relatively simple
formulation and solutions.

VII. FuTurRE WORK

There is much work to do, and I am excited to continue my
exploration and development over the summer!

A. Codebase

Given the time constraints, the codebase itself is in a
dismal state, and is not up to my standards. There are a
number of TODOs that I wish to improve upon for the code
organization, as well as other improvements such as typing,
command-line arguments, result and figure saving, etc.

B. Further implementation

As mentioned in the error analysis section, I wish to imple-
ment optimization on my own, as well as implement it using
CVXPY in order to compare performance in the IDSAction
step. I also wish to further improve my implementation of
my parallelization, in order to continually improve upon the
simulation performance.

C. Theoretical exploration

Personally, I wish to fully immerse myself in relavent bandit
literature over the summer. This includes reviewing notes
on probability theory, statistics, information theory, bandit
textbooks, as well as important papers. For example, one
paper I could take a closer look at is “Aligning Al Agents
via Information-Directed Sampling” from Jeon and Van Roy
[11], where there is a noticable gap between the proven
theoretical results and empirical simulation results.

VII. EtHicAL CONSIDERATIONS

Bandits present an ethical and societal risk given their ten-
dency to pillage and loot innocent villagers and passerbys,
often through violent means. As seen in popular media, a
bandit lives a life of crime, similar to that of a pirate [12].
On the other hand, the ethical and societal risks of multi-
armed bandits are not so obvious. One example from my
personal experience is with the relationship of MABs and
related algorithms to those of recommendation and ranking
systems present in the industry. Prior to Stanford, I spent
time on the Facebook notifications team as well as the
Facebook feed team, where I firsthand witnessed the poten-



tial of these algorithms for maximizing user engagement. In
this case, maximizing reward was analgous to encouraging
certain behaviors that increased topline metrics, such as
sending certain notifications at specific times in order to
get users to enter the app. However, this one-dimensional
view of “reward” leaves out many potentially harmful side-
effects. Some prominent issues that can be exacerbated by
this sort of optimization in the notification space are: social
media addiction, notification quality degradation, notifica-
tion “blindness”, loss of user trust, etc.

Potential mitigation strategies for these issues can involve
modifying the objective of the algorithms to explicitly in-
clude metrics that measure the above risks.

Other strategies can involve setting up other algorithms
or systems to constrain and double-check the actions output
by the algorithms in question.

Finally, another potentially effective measure would be
policy changes or education on the industry itself, whether
through widespread legislation or through shifts in indi-
vidual company culture, to prioritize user experience and
wellbeing over pure metric shifts.

IX. CobpE AND PROJECT SUMMARY VIDEO

Code is linked on my github (github.com/DavidJGChen/
bandit-exploration), and video is linked on my YouTube
(youtu.be/0YxQ1Wj4P_I).
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